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Abstract

The problem of recovering from qubit erasures has recently gained attention as erasures occur in many physical

systems such as photonic systems, trapped ions, superconducting qubits and circuit quantum electrodynamics. While

several linear-time decoders for error correction are known, their error-correcting capability is limited to half the

minimum distance of the code, whereas erasure correction allows one to go beyond this limit. As in the classical

case, stopping sets pose a major challenge in designing efficient erasure decoders for quantum LDPC codes. In

this paper, we show through simulation, that an attractive alternative here, is the use of quantum expander codes

in conjunction with the peeling decoder that has linear complexity. We also discuss additional techniques including

small-set-flip decoding, that can be applied following the peeling operation, to improve decoding performance and

their associated complexity.

I. INTRODUCTION

Quantum information processing promises an exponential speed-up for many classical tasks. However, physical

qubits are far more susceptible to noise than classical bits. Quantum error correction is imperative for building a

practical quantum computer, and has been an active field of research for the last two decades.

A popular class of quantum error-correcting codes is the class of stabilizer codes developed by Gottesman [1],

where the codespace is defined as the simultaneous +1-eigenspace of an abelian group of Pauli operators, called the

stabilizer group. A practical constraint on the stabilizer operators is that they must have low weight, i.e., they must

operate on only a few qubits at a time. Further, each qubit must be operated upon by only a few stabilizer operators.

This gives rise to the notion of quantum Low Density Parity Check (LDPC) codes, analogous to the classical case.

Gottesman [2] showed that it is possible to build fault-tolerant quantum circuits using such quantum LDPC codes.

Efforts to construct good quantum LDPC codes that have both high rate and large minimum distances gave rise

to many interesting and innovative ideas [3]–[10]. One such idea is the hypergraph product (HGP) construction by
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Tillich and Zémor [11]. The HGP construction takes two classical LDPC codes as inputs and yields a quantum

LDPC code. A special case is when the classical codes are expander codes [12]. In this case the resultant quantum

code is called a quantum expander code [13].

While quantum expander codes do not simultaneously achieve a constant rate and linear minimum distance

(unlike [6], [7], [9]), they are relevant to practice as they permit linear-time decoding [13]–[15].

However, in addition to having good rates and distances, practical quantum error-correcting codes also need to

have low decoding complexity. Recently, the problem of recovering from qubit erasures has gained much interest

as they occur in many physical systems such as photonic systems [16], [17] (where photon loss, which can be

modeled as an erasure, is the dominant source of error) and systems based on neutral atoms [18], trapped ions [19],

superconducting qubits [20] and circuit quantum electrodyanamics [21]. Moreover, for the class of HGP codes, it

has been shown using a classical Viderman-like approach [22] that the problem of error correction can be converted

to that of erasure correction for a certain error regime [23]. Several linear-time decoders for error-correction are

known [8]–[10], however their error-correcting capability is limited to half of the minimum distance of the code.

Erasure correction allows one to go beyond this limit. As in the classical case, stopping sets pose a major challenge

in designing efficient erasure decoders for quantum LDPC codes. Several decoders for erasure-correcting quantum

LDPC codes have been proposed in the literature [24]–[32] that deal with stopping sets in different ways.

Our contributions: The principal contribution of the paper is showing through simulation results that make a

comparison across quantum LDPC codes, that an attractive option for dealing with erasures, is the use of quantum

expander codes in conjunction with the linear-complexity peeling decoder. As in the classical case, stopping sets pose

a major challenge in designing efficient erasure decoders for quantum LDPC codes. We discuss additional techniques

such as small-set-flip decoding, cluster-based decoding, that are capable of improving decoding performance by

handling specific classes of stopping sets. We also discuss their associated complexity. Our simulation results also

include limited statistics on erasure patterns that the peeling decoder was unable to recover from.

Organization of the paper: Section II provides background on quantum error correction. The Hypergraph Product

Code (HGP) along with the relevant prior literature on decoding the hypergraph product code, are presented in

Section III. Our peeling-based decoding algorithm is presented in Section IV. Analysis of our algorithm is presented

in Section V. Simulation results are presented in Section VI and the final section, Section VII, draws conclusions.

II. QUANTUM ERROR CORRECTION

We will use 0n to denote the zero vector of length n, and In to denote the (n× n) identity matrix.

A. Classical Error-Correcting Codes

An [n, k, dmin] binary, linear, classical error-correcting code C is a k-dimensional subspace of Fn
2 , that corresponds

to the nullspace of a suitably-defined matrix H called the parity-check matrix of the code.

The code can also be defined using a bipartite graph T (V ∪ C,E), alternatively denoted as T (H), called the

Tanner graph. The left vertices V (variable nodes) and the right vertices C (check nodes) correspond to the columns
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and rows of the parity-check matrix H of size |C| × |V |. An edge exists between i ∈ C and j ∈ V if hij = 1;

otherwise, hij = 0.

A code is (dV , dC)-regular LDPC if its associated Tanner graph is biregular, with variable nodes V having

degree dV and check nodes C having degree dC . A code is (dV , dC)-regular LDPC if its associated Tanner graph

is biregular, with variable nodes V having degree dV and check nodes C having degree dC . The particular class

of biregular, bipartite graphs that we will consider here is the class of expander graphs [12] defined below:

Definition 1. (Expander graph) Let T (V ∪C,E) be a bipartite Tanner graph such that |V | ≥ |C|. The graph T is

said to be (γV , δV )-left-expanding (resp. (γC , δC)-right-expanding) for some constants γV , δV > 0 (resp. γC , δC >

0), if for any subset S ⊆ V (resp. T ⊆ C), such that |S| ≤ γV |V | (resp.|T | ≤ γC |C|), the neighbourhood Γ(S) of

S (resp. Γ(T ) of T ) in the graph T (V ∪C,E) satisfies |Γ(S)| ≥ (1− δV )dV |S| (resp. |Γ(T )| ≥ (1− δC)dC |T |).

The graph T (V ∪C,E) is said to be (γV , δV , γC , δC)-left-right-expanding if it is both (γV , δV )-left-expanding and

(γC , δC)-right-expanding.

The expander graphs considered in this paper are left-right-expanding. Classical expander codes, introduced by

Sipser and Spielman [12], are defined as codes associated with (γ, δ)-left-expanding (dV , dC)-regular Tanner graphs

T (V ∪C,E). The minimum distance d of the expander code associated with Tanner graph T (V ∪C,E) satisfies the

lower bound d > γ|V |. Viderman proposed in [22], a linear-time erasure decoding algorithm capable of correcting

up to γ|V | erasures.

Even though explicit construction of good expander graphs is challenging, such graphs can nevertheless be

efficiently found using probabilistic techniques [33], [14] as outlined in the theorem below.

Theorem 1. ( [14, Theorem 2.3]) Let δV , δC > 0 be two constants. For integers dV > 1
δV

and dC > 1
δC

, a graph

T (V ∪C,E) with left-degree bounded by dV and right-degree bounded by dC chosen at random according to some

distribution is (γV , δV , γC , δC)-left-right expanding for γV , γC = Ω(1) with high probability.

B. Quantum Error-Correcting Codes

A quantum error-correcting code encoding k logical qubits into n physical qubits is a 2k-dimensional subspace

of (C2)⊗n. Here ⊗ denotes tensor product. Gottesman developed the stabilizer formalism for quantum codes in

[1], inspired by classical linear codes. The stabilizer formalism serves as a general framework for studying a large

class of quantum code. We describe this formalism below.
The Pauli matrices are defined as

I2 =

1 0

0 1

 , X =

0 1

1 0

 , Z =

1 0

0 −1

 ,

and Y = iXZ. The Pauli group on n qubits, Pn, is the set of all Pauli operators acting on n qubits, with usual

matrix multiplication as the group operation:

Pn = {ωP1 ⊗ P2 ⊗ · · · ⊗ Pn : Pi ∈ {I2, X, Z, Y } ∀ i, ω = {±1,±i}}.

The operator P = Xa1Zb1 ⊗Xa2Zb2 ⊗ · · · ⊗XanZbn can be represented by the vector

p = (a1 a2 · · · an | b1 b2 · · · bn) ∈ F2n
2 .
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This representation of an operator as a binary vector is called the symplectic representation.

A stabilizer group, S, is an abelian subgroup of the Pauli group such that −I2n /∈ S. A quantum stabilizer code

QS is defined as the simultaneous +1 eigenspace of all the operators in S , i.e.,

QS = {|ψ⟩ : S |ψ⟩ = |ψ⟩ ∀ S ∈ S},

where we have used Dirac’s bra-ket notation. The weight of a Pauli operator P = ωlP1 ⊗ P2 ⊗ · · · ⊗ Pn is the

number of indices j ∈ [1, n] such that Pj ̸= I2. For a quantum stabilizer code QS defined via a stabilizer group S,

the minimum distance, dmin is defined as the minimum weight of all Pauli operators in N(S) \ S , where N(S) is

the normalizer of S in Pn. This stabilizer code QS is denoted as a [[n, k, dmin]] code.

C. Quantum Erasure Channel

The quantum erasure channel is a noise model in which each qubit is lost or erased independently with some

probability. This loss can be detected, and the density matrix of the qubit, ρ, is replaced with a maximally mixed

state, I
2 . The maximally mixed state can be expressed as I

2 = 1
4 (ρ+XρX† +Y ρY † +ZρZ†) , implying that each

erased qubit can be interpreted as being acted upon by the Pauli operators I , X , Y , and Z with equal probability.

In this manner, erasure correction is effectively converted into correction of errors with known locations, denoted

by a vector ε. Replacing each qubit in the support of ε with a maximally mixed state is equivalent to the encoded

state being subjected to a uniform Pauli error E supported on the erasure locations, i.e., supp(E) ⊆ supp(ε).

D. CSS Codes

Calderbank-Shor-Steane (CSS) codes are a sub-class of stabilizer codes where each stabilizer generator is a

tensor product of either X-type or Z-type Pauli matrices [34], [35], and are one of the most well-studied classes of

quantum codes. A CSS code is defined by two binary classical codes, CX = ker(HX) and CZ = ker(HZ), such that

C⊥
Z ⊆ CX (or equivalently, C⊥

X ⊆ CZ). Here, HX of size rX × n and HZ of size rZ × n represent the parity-check

matrices of CX and CZ , respectively. The basis of dual code CX⊥ (resp. CZ⊥) corresponds to the X-type (resp.

Z-type) stabilizer generators and is used to correct Z-type (resp. X-type) errors.

The quantum code CSS(CX , CZ) is a stabilizer code with stabilizer generators determined by the following check

matrix:

H =

HX 0

0 HZ


The dimension of the CSS code is given by k = dim(CX/C⊥

Z ) = dim(CZ/C⊥
X) = dim(CX) + dim(CZ)− n. The

minimum distance of CSS code is given by, dmin = min{dX , dZ}, where, dX := min{wH(E) | E ∈ CX\C⊥
Z } and

dZ := min{wH(E) | E ∈ CZ\C⊥
X}, where wH(·) denotes Hamming weight. The CSS code CSS(CX , CZ) is an

[[n, k, dmin]] code.

The error operator E, is symplectically represented by the binary 2n-tuple (EX , EZ). The syndrome correspond-

ing to (EX , EZ) is given by σ = (σX , σZ), where σZ = HXE
T
Z (resp. σX = HZE

T
X ) is obtained by measuring

X-type (resp. Z-type) stabilizer generators and is used for correcting Z-type (resp. X-type) errors independently.
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Error correction for CSS codes can be performed independently for X-errors and Z-errors. Specifically, by

considering the syndrome σ = (σX ,0rz ) (respectively, σ = (0rx , σZ)), X-errors (respectively, Z-errors) can be

corrected separately. In this paper, the description of the algorithm presented in Section IV is restricted to only

X-type errors E, using the syndrome σ obtained by measuring the Z-type stabilizer generators.

Quantum LDPC codes are a class of stabilizer codes where each stabilizer generator acts on a constant number

of qubits, and each qubit is acted upon by a constant number of stabilizer generators. When CSS codes are

constructed with the classical parity-check matrices HX and HZ being sparse, they correspond to quantum LDPC

codes. Precisely, these matrices have a constant row weight and a constant column weight, which characterizes the

LDPC property.

III. HYPERGRAPH PRODUCT CODES

The HGP construction by Tillich and Zémor [11] provides a framework for constructing quantum CSS codes

from two classical codes.

Let C be a classical code with parity-check matrix H . The transpose code CT is obtained as the null-space of

HT . Informally, CT is the code obtained by reversing the roles of check and variable nodes in the Tanner graph of

C.

Let C1 be an [n1, k1, d1] classical code with parity-check matrix H1 of size r1 × n1, and C2 be an [n2, k2, d2]

classical code with parity-check matrix H2 of size r2 × n2.

The product code C1 ⊗ C2 is the classical code with a parity-check matrix defined as:

H =

In1
⊗H2

H1 ⊗ In2


The hypergraph product of two classical codes C1 and C2, denoted as HGP(C1, C2), is defined as the quantum

CSS code, CSS(CX , CZ), where, CT
X = C1⊗CT

2 , and CT
Z = CT

1 ⊗C2. The check matrix of HGP(C1, C2) is given by

H =

HX 0

0 HZ


where HX =

(
In1 ⊗H2 HT

1 ⊗ Ir2

)
and HZ =

(
H1 ⊗ In2 Ir1 ⊗HT

2

)
. It can be verified that HXH

T
Z = 0,

satisfying the CSS property. Furthermore, if C1 and C2 are classical LDPC codes, then HGP(C1, C2) is a quantum

LDPC code.

Let T (H1) := T (V1 ∪C1, E1) be the Tanner graph for the classical code C1 and T (H2) := T (V2 ∪C2, E2) be

the Tanner graph for the classical code C2. The Tanner graph of HGP(C1, C2) is a 4-partite graph T ((V1 × V2) ∪

(C1 × C2) ∪ (V1 × C2) ∪ (C1 × V2), E).

Here, the qubits are indexed by the set VQ := (V1 × V2) ∪ (C1 × C2). The X-stabilizer generators are indexed

by the set CX := C1 × V2, and the Z-stabilizer generators are indexed by the set CZ := V1 × C2.

Two nodes u1, u2 ∈ VQ × (CX ∪ CZ) are connected if: the first coordinate of u1 and u2 is the same, and the

second coordinate is connected in T (H2), or the second coordinate of u1 and u2 is the same, and the first coordinate

is connected in T (H1). Fig. 1 illustrates this construction.

If C1 and C2 are classical LDPC codes, then HGP(C1, C2) is a quantum LDPC code.
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Fig. 1: The Tanner graph for the HGP code constructed from classical codes C1 with Tanner graph T ((V1∪C1), E1)

and C2 with Tanner graph T ((V2 ∪ C2), E2).

A. Quantum Expander Codes

The hypergraph product construction of Tillich and Zémor, applied to classical expander codes, results in a class

of quantum LDPC codes with constant rate and minimum distance of order Θ(
√
n), where n is the length of the

resulting quantum code. Such codes are referred to as quantum expander codes.

Let T (V ∪C,E) be a biregular (γV , δV , γC , δC)-left-right-expander graph with left degree dV and right degree

dC , such that dV ≤ dC . Consider the classical expander code, C, associated with the Tanner graph T (H), with

minimum distance dmin and parity-check matrix H of size |C| × |V |.

The hypergraph product of C with itself results in a quantum expander code with parity-check matrices:

HX =
(
I|V | ⊗H HT ⊗ I|C|

)
, HZ =

(
H ⊗ I|V | I|C| ⊗HT

)
.

The parameters of this code are

[[N = |V |2 + |C|2, k ≥ (|V | − |C|)2, ≥ min{dmin, d
T
min}]],

where dTmin is the minimum distance of the transpose code CT . Further, this quantum code is LDPC with generators

of weight (dV + dC), and each qubit is checked by at most (2max(dV , dC)) generators.
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We denote by V 2 (resp. C2), the V ×V type (resp. C×C type) qubits. The X-stabilizer generators are indexed

by the set CX := C × V of size RX , and Z-stabilizer generators are indexed by the set CZ := V ×C of size RZ .

Denote by T (HZ) (resp. T (HX ) the Tanner graph with the set of variable nodes V 2 ∪ C2 and the set of check

nodes CZ (resp. CX ).

B. Pruned Peeling Decoder

The pruned peeling erasure decoder for quantum CSS codes proposed by Connolly et al. in [36] is inspired by

the classical peeling decoder described in [37], [33]. Consider a classical LDPC code with Tanner graph T (H).

Given an erasure vector ε, two terms are defined: dangling check and dangling bit. A dangling check is a check

node that is incident to a single erased bit and this erased bit is referred to as a dangling bit.

The classical peeling decoder for classical LDPC codes is an iterative algorithm that uses the syndrome value at

the dangling check to determine the erased value at the corresponding dangling bit and then modifies the syndrome

accordingly. Using this updated syndrome, the process repeats until the erasures are fully corrected or peeling is

not possible further.

A stopping set for T (H) is defined as a subset of bits that does not contain a dangling bit. Thus, if a stopping

set lies within the erasure location, it cannot be corrected using the classical peeling decoder, resulting in decoder

failure.

Now, consider decoding the X-type errors using the syndrome obtained by measuring Z-type stabilizer generators.

This problem can be cast as a classical decoding problem of a linear code with Tanner graph T (HZ), where HZ

is the parity-check matrix whose rows correspond to Z-type stabilizer generators. The classical peeling decoder

can then be applied to a quantum CSS code directly; however, it tends to fail more frequently due to an increased

number of stopping sets. This increase occurs because the support of an X-type generator forms a stopping set

for the Tanner graph T (HZ). This is due to the fact that the symplectic representation of the X-type stabilizers

are codewords of the linear code ker(HZ). Such stopping sets, induced by stabilizers, are referred to as stabilizer

stopping sets.

The idea of the pruned peeling decoder is to iteratively correct all dangling bits using the syndrome at the

dangling check. For the remaining errors that are not corrected (as they are part of a stabilizer stopping set), the

approach is to identify a stabilizer generator S supported entirely within the erasure locations and then arbitrarily

remove a qubit from this support. This works because the error E and the error ES act identically on this qubit.

By breaking the stopping sets in this manner, the decoder can correct more erasures.

The pruned peeling decoder can be applied to any quantum CSS code; however, when applied to hypergraph

product codes, it does not show significant improvement over the classical peeling decoder due to the nature of

hypergraph stopping sets, as explained next.

C. Stopping Sets for Hypergraph Product Codes

Consider a hypergraph product code HGP(C, C) following the notations from Section III-A. Let T (H) be the

Tanner graph of C, and T (HT ) be the Tanner graph of the transpose code CT . There are two types of stopping
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Fig. 2: Stabilizer stopping set for the HGP code constructed from two classical 3-bit repetition code.

sets for the Tanner graph T (HZ):

1. Stabilizer stopping sets: These types of stopping sets are induced by the X-type stabilizer generators, as

explained previously. See Fig. 2 for an example.

2. Vertical and horizontal stopping sets: These types of stopping sets arise from the stopping sets of the Tanner

graphs T (H) and T (HT ). If SV is a stopping set for T (H), then for all v ∈ V , {v}×SV is a stopping set for the

Tanner graph T (HZ). These stopping sets {v} × SV are referred to as horizontal stopping sets. Similarly, if SC

is a stopping set for T (HT ), then for all c ∈ C, SC × {c} is a stopping set for the Tanner graph T (HZ). These

stopping sets SC × {c} are referred to as vertical stopping sets. Fig. 3 illustrates this.

The pruned peeling decoder, when applied to hypergraph product codes, can successfully break out of some

stabilizer stopping sets. However, this decoder fails when the erasure pattern lies within vertical or horizontal

stopping sets. Furthermore, each horizontal (resp. vertical) stopping set in T (H) (resp. T (HT )) results in
√
N

copies of the corresponding stopping set in T (HZ). Consequently, vertical and horizontal stopping sets account for

the majority of failures of the pruned peeling decoder. As a result, pruned peeling decoder provides only a slight

improvement over the classical peeling decoder for hypergraph product codes.

The vertical-horizontal (VH) decoder, discussed next, effectively addresses the vertical and horizontal stopping

sets.
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Fig. 3: Horizontal and vertical stopping sets for the HGP code.

D. Vertical-Horizontal (VH) Decoder for Hypergraph Product Codes

After observing that the pruned peeling decoder fails due to horizontal and vertical stopping sets, Connolly et al.

[36] proposed the VH erasure decoder for hypergraph product codes. This decoder leverages the product structure

of hypergraph product codes to decompose the erasures remaining after pruned peeling into vertical and horizontal

clusters, which are then solved sequentially using classical Gaussian decoder.

For the description of the VH erasure decoder, consider the hypergraph product of the classical code C = ker(H),

having a Tanner graph (V ∪C,E), with itself. The Tanner graph of HGP(C, C) is given by T (VQ∪ (CX ∪CZ), E).

Let TV (resp. TH ) be the subgraph induced by nodes ((V ∪ C) × C) (resp. (V × (V ∪ C))). The subgraph TV
(resp. TH ) contains the vertical (resp. horizontal) edges of T (VQ ∪ (CX ∪ CZ), E).

Given an erasure vector ε, let V (ε) be the set of erased qubits and the checks connected to these qubits. A

vertical cluster (resp. horizontal cluster) contains a subset of V (ε) that forms a connected component in the graph

TV (resp. TH ).

From the structure of T (VQ ∪ (CX ∪ CZ), E), no two vertical clusters (resp. horizontal clusters) can intersect

with each other. A vertical cluster and a horizontal cluster can intersect at most in one check, which is referred

to as a connecting check. A check internal to a single cluster that is not a connecting check is called an internal

check.
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A VH graph for ε is a bipartite graph with vertices representing the horizontal and vertical clusters. An edge

exists between two vertices in this graph if the corresponding clusters intersect at a connecting check.

A cluster that does not contain any connecting checks, i.e., it only has internal checks, is called an isolated

cluster. These are the standalone vertices of the VH graph that do not have any edges. A cluster that contains

exactly one connecting check, along with other internal checks, is called a dangling cluster. These correspond to

the vertices of the VH graph that are connected to exactly one other vertex. A cluster containing more than one

connecting check, in other words, one that is neither isolated nor dangling, is called a non-dangling cluster. A

dangling cluster is further classified as either free or frozen according the following definition [36].

Definition 2. If there exists an error pattern within a dangling cluster that has a trivial syndrome at the internal

checks and syndrome 1 at the connecting check, then it is a free check. Otherwise, the check is called frozen.

Equivalently, a dangling check is frozen if, and only if, for all error patterns within a dangling cluster consistent

with the original syndrome at the internal checks, the syndrome at the connecting check is either always 0 or always

1. This is because if there were two errors, both consistent with the syndrome at the internal checks, but having

different values at the connecting check, then the syndrome corresponding to the sum of these two errors is 0 on

all the internal checks and 1 at the connecting check, implying that the connecting check is free. When the check

is classified as free or frozen, we call the corresponding dangling cluster as free or frozen as well.

The VH decoder begins by classifying each cluster as isolated, dangling or non-dangling. Then, the dangling

clusters are classified as free or frozen. An isolated cluster is corrected independently of other clusters, as it is not

connected to any other cluster. Gaussian elimination is employed to correct such clusters. For a frozen dangling

cluster, although it has a connecting check, this connecting check is frozen, meaning that any correction has the same

effect on the connecting check. Therefore, a frozen dangling cluster is corrected in the same manner as an isolated

cluster. Correcting a free dangling cluster is postponed until the end of the procedure. During the intermediate

steps, this cluster, along with its connecting check, is removed from the Tanner graph T (HZ) while the remaining

erasures are corrected. After correcting the other erasures and updating the syndrome, a free dangling cluster is

corrected using the updated syndrome within that cluster.

This is an iterative algorithm that iterates over all the clusters sequentially. It corrects isolated clusters and frozen

dangling clusters independently of other clusters. Once corrected, these clusters are removed from the VH graph,

potentially making the remaining clusters correctable.

The Gaussian decoder is used to determine whether a connecting check is frozen or free, as well as for correction

within a cluster. The computational complexity of this process is O(n3) for a cluster of size O(n).

This algorithm fails if the VH graph contains a cluster-cycle arising from stabilizer stopping sets. To address this,

the authors modify the algorithm by removing free checks from all clusters, not just from free dangling clusters. This

modification helps eliminate some cycles but introduces additional complexity, as it requires classifying multiple

checks per cluster as frozen or free, rather than just a single check as in the case of dangling clusters. Consequently,

the modified algorithm is slower than the VH decoder and has complexity exceeding O(n3) for a cluster of size

O(n). However, this modification still does not account for all the stabilizer stopping sets. Therefore, despite this
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Fig. 4: Illustration of different types of clusters.

modification, the algorithm fails if a cycle still persists in the VH graph.

IV. A LINEAR-TIME ERASURE DECODER FOR QUANTUM EXPANDER CODES

Our algorithm can be divided into two phases. In the first phase, we apply the classical peeling decoder to the

Tanner graph T (HZ). That is, we iteratively correct all dangling bits using the syndrome value at the corresponding

dangling checks. The second phase, as given in Algorithm 4, begins by decomposing the remaining erasures into

clusters, as defined and described in Section III-D.

Fig. 4 illustrates this.

Given a cluster κ, if it is dangling, we first classify it as either free or frozen. If the cluster cannot be classified

at this stage, it will remain untouched for now and will be revisited at a later point. The classification procedure is

described in detail in Section V-B.

If the cluster κ is isolated or frozen dangling, we correct it using the classical linear-time erasure decoding

algorithm [22], given in Algorithm 1. Classical erasure decoding can be used here, as each horizontal (resp.

vertical) isolated or frozen dangling cluster belongs to only a single classical Tanner graph, T (H) (resp. T (HT )),

corresponding to the classical expander code. This is because such clusters do not have a connecting check in the

case of an isolated cluster, or have a frozen connecting check in the case of a frozen dangling cluster.

The notation used in Algorithm 1 is as follows: Vκ denotes the set of variable nodes and Cκ denotes the set of

check nodes within the cluster κ, respectively. For a variable node, v ∈ Vκ, Γ(v) is a vector of length RZ supported

on the neighborhood of v and ev is the weight-one binary vector of length N supported on the vth variable node.

Also, σκ denotes the syndrome vector of length RZ restricted to the check nodes in the cluster, and σκ,u indicates

the syndrome value at the uth check node.
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Algorithm 1 begins by initializing a set Unique, which contains all the check nodes in Cκ that are connected to

only one variable node v ∈ Vκ. We will refer to such checks as unique checks. While there exists a variable node

v that is connected to a unique check u, we check the syndrome value, σκ,u, at this particular check. If σκ,u = 1,

then we add an error vector supported at the vth node to the estimate Êi and update the syndrome accordingly.

Then we remove the variable node v from Vκ. Next, we check if any of the check nodes in the neighborhood of

v have become unique checks. If they have become unique checks, they are added to the set Unique. Then the

process repeats.

Algorithm 1 Algorithm to decode from erasures [22]

Input: For a dangling cluster κ, set of erasure locations Vκ, set of checks Cκ, syndrome σκ ∈ FRZ
2

Output: Estimate of error Êκ

1: procedure PEEL

2: Ê0 = 0N ; σ0 = σκ; i = 0; unpeeled = |Vκ|

3: Unique = {u ∈ Cκ : |Vκ ∩ supp(Γ(u))| = 1}

4: while ∃ v ∈ Vκ and u ∈ Unique such that supp(Γ(u)) ∩ Vκ = v do

5: if σκ,u = 1 then

6: Êi+1 = Êi ⊕ ev

7: σi+1 = σi ⊕ Γ(v)

8: end if

9: Vκ = Vκ\{v}

10: for all u′ ∈ supp(Γ(v)) do

11: if |supp(Γ(u′)) ∩ Vκ| = 1 then

12: Unique = Unique ∪ {u′}

13: else

14: Unique = Unique\{u′}

15: end if

16: end for

17: i = i+ 1,unpeeled = unpeeled− 1

18: end while

19: return Êi, σi,unpeeled

20: end procedure

The estimated error within this cluster, ÊPEEL, is then added to Ê , and σPEEL ⊕ σκ is added to σ . Finally, Vκ

is removed from erasure ε.

In the case of a free dangling cluster, κ, the cluster and its free check are removed from the Tanner graph

T (HZ), added to a stack, and the correction is delayed until all correctable frozen dangling and isolated clusters

are corrected. Note that each such cluster becomes essentially an isolated cluster later, so we use Algorithm 1 to
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correct it.

The process of correcting clusters independently can be viewed as peeling each cluster from the VH graph. After

iteratively correcting these clusters, the remaining errors will be the ones which couldn’t be peeled during any step

in the algorithm and those that are part of cluster-cycles in the VH graph arising from the stabilizer stopping sets.

These remaining erasures are then corrected using the SSF erasure-decoding algorithm, as described in Algorithm

3.

The SSF algorithm, proposed by Leverrier et al. in [13], is the quantum analogue of the bit-flip error-decoding

algorithm introduced by Gallager for classical LDPC codes in [38] and analyzed by Sipser and Spielman for classical

expander codes in [12].

The SSF decoder works similar to the bit-flip decoder by dividing its execution into several rounds, where the

algorithm attempts to reduce the syndrome weight in each round. However, unlike the bit-flip decoder, where the

syndrome weight can be reduced by flipping a single bit, the SSF decoder requires flipping a set of qubits F in

order to reduce the syndrome weight. Here, by flipping a qubit, we mean that the qubit undergoes an X-type error.

Consider correcting X-type errors using the syndrome obtained by measuring Z-type stabilizer generators. The

authors in [13] define a term small set, which is a subset of an X-type generator’s support, and the set of all small

sets is denoted by F . The set F , which when flipped reduces the syndrome weight, is then chosen from F . We

refer the readers to Chapter 4 of [39] for more details.

SSF for errors can be modified to work for erasures or, more specifically, errors with known locations by defining

small sets the following way. A set F ⊆ VQ is a small set if and only if it is included in the support of an X-type

generator as well as belongs to the erasure set. SSF is analysed for erasures in Section V-C.

Finally, Algorithm 4 returns a Failure if the residual syndrome is not zero; otherwise, it returns the estimated

error Ê. The analysis of our algorithm is provided in Section V.

Algorithm 2 Dangling Cluster Classification

Input: For a dangling cluster κ, set of erasure locations Vκ, set of checks Cκ

Output: Either Free or Unclassified

1: procedure CLASSIFY

2: Set the syndrome (σnew
κ ) at the internal checks in Cκ as 0 and at the connecting check as 1

3: ÊPEEL, σPEEL, unpeeled = PEEL(Vκ, σnew
κ )

4: if unpeeled ̸= 0 then

5: return Unclassified ▷ Procedure PEEL did not terminate successfully

6: end if

7: if σPEEL|Cκ
= 0 then ▷ If the syndrome restricted to the check Cκ is trivial

8: return Free

9: end if

10: return Frozen

11: end procedure
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Algorithm 3 Small-Set-Flip (SSF) Algorithm [39]

Input: An erasure vector ε ∈ FN
2 , a syndrome σ ∈ FRZ

2

Output: Estimate of error Ê

1: procedure SMALL-SET-FLIP

2: Ê0 = 0N ; σ0 = σκ; i = 0

3: while ∃F such that supp(F ) ∈ F : |σi| − |σi ⊕ σ(F )| ≥ βdC |supp(F )| do

4: argmaxF∈F
|σi|−|σi⊕σ(F )|

|F |

5: Êi+1 = Êi ⊕ Fi

6: σi+1 = σi ⊕ σ(Fi)

7: i = i+ 1

8: end while

9: return Êi, σi

10: end procedure

Remark 1. Algorithm 4 (in the current form) may result in an infinite loop if the condition on line 8 is always

true after some point, due to classification failure. To avoid this, we can keep a variable Êi for the ith iteration

and check if the error in the current iteration is the same as in the previous one. If it is, then we break the while

loop. For simplicity, we have not added this in the algorithm.

V. ANALYSIS OF ALGORITHM 4

In this section, we provide the proof of correctness of Algorithm 4.

A. Analysis of Algorithm 1

Theorem 2. Consider a classical expander code associated with a bipartite Tanner graph T (V ∪C,E), which is

(γ, δ)-left expanding for constants γ, δ > 0. Any error E ⊆ ε, where ε is the set of erasure locations such that

|ε| ≤ γ|V |, can be corrected by Algorithm 1 in linear time.

Proof. We refer the readers to Section 4.2 in Ref. [22] for the proof.

In Algorithm 4, we use Algorithm 1 to correct an isolated or frozen dangling cluster κ. If |Vκ| ≤ ΓV |V | (resp.

|Vκ| ≤ ΓC |C|) for a horizontal (resp. vertical) cluster, then the erasures in this cluster are corrected completely

according to Theorem 2.

B. Analysis of Algorithm 2

After applying the classical peeling decoder to the Tanner graph T (HZ), none of the internal checks for any

cluster would be dangling. It follows that if there is a dangling check in a cluster, then it has to be the connecting
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Algorithm 4 Linear-time Erasure Decoder for Quantum Expander Codes

Input: An erasure vector ε ∈ FN
2 , a syndrome σ ∈ FRZ

2

Output: Either Failure or an X-type error Ê ∈ {I,X}N such that σ(Ê) = σ and supp(Ê) ⊆ supp(ε)

1: procedure LINEAR-TIME ERASURE DECODER

2: Ê = 0N ▷ Ê: error estimate, initialized as a zero vector

3: Eres = ε ▷ Eres: set of residual erasures

4: L = [] ▷ L: an empty stack

5: while there exists an isolated or a dangling cluster κ do

6: if κ is dangling then

7: output = CLASSIFY(V ′
κ) ▷ V ′

κ: a copy of Vκ

8: if output = Unclassified then

9: continue ▷ Go to line 5

10: end if

11: end if

12: if κ is Isolated or Frozen then

13: ÊPEEL, σPEEL = PEEL(Vκ, σκ)

14: Ê = Ê ⊕ ÊPEEL, Eres = Eres ⊕ ÊPEEL, σ = σ ⊕ (σPEEL ⊕ σκ)

15: else ▷ When κ (and the connecting check) is free

16: Remove the free connecting check c of κ from the Tanner Graph T (HZ)

17: Add the pair (κ, c) to the stack L

18: Set Eres|Vκ
= 0|Vκ| ▷ Eres|Vκ

: residual errors restricted to Vκ

19: end if

20: end while

21: while the stack L is non-empty do

22: Pop a pair (κ, c) from the stack L

23: Add the check node c to the Tanner Graph T (HZ)

24: ÊPEEL, σPEEL = PEEL(Vκ, σκ)

25: Ê = Ê ⊕ ÊPEEL, Eres = Eres ⊕ ÊPEEL, σ = σ ⊕ (σPEEL ⊕ σκ)

26: end while

27: ÊSSF, σSSF = SMALL-SET-FLIP(Eres, σ)

28: Ê = Ê ⊕ ÊSSF, Eres = Eres ⊕ ÊSSF

29: if σSSF ̸= 0RZ
then

30: return Failure

31: end if

32: return Ê

33: end procedure
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check. Thus, peeling for any dangling cluster either for classification or for erasure-correction must begin with the

connecting check.

For classification, we fix the (virtual) syndrome at the internal checks as 0 and at the connecting check as 1 and

use PEEL to assign values to variable nodes consistent with this syndrome. If the procedure does not terminate,

some of the variables nodes are left unassigned. In this case, the PEEL procedure has failed to classify.

Since the procedure PEEL runs in linear-time, classification is also done in linear-time.

C. Analysis of Algorithm 3

The notation followed in this analysis is: Let T (V ∪ C,E) be a (dV , dC)-biregular (γV , δV , γC , δC)-left-right-

expanding graph. Let C be the classical expander code associated with T . The quantum expander code CT =

HGP(C, C) is obtained by taking the hypergraph product of C with itself.

Define r and β by:

r :=
dV
dC

=
|C|
|V |

, β :=
r

2

[
1− 4

(
δV + δC + (δC − δV )

2
)]
.

The decoding strategy of SSF, given in Algorithm 3, is to decrease the syndrome by flipping a set of qubits called

a small set. Let the set of all small sets be given by

F := {F ⊆ ΓX(g) ∩ ε : g ∈ CX}.

Here, ΓX(g) represents the support of the X-type stabilizer generator g, and ε denotes the set of erasures. However,

in Algorithm 3, the small set, the set of erasures, and the support of stabilizer generators are treated as vectors

supported appropriately.

For correcting erasures, the idea is to go through the set of all small sets F and check whether there exists a

small set F ∈ F that would decrease the syndrome. If such an F exists, we flip F and then proceed to find the next

small set. In Algorithm 3 a small set F is flipped if and only if it decreases the syndrome bt atleast βdC |F |. The

analysis of the SSF decoder for erasures follows a similar analysis as done for errors in [14]. Given the syndrome σ,

Algorithm 3 provides an estimate of the error Ê, supported on the erasure locations, which satisfies the syndrome.

Following the references [13] and [14], we define the notion of critical generators. An X-type generator is termed

a critical generator if its support contains a set of qubits that can be flipped to reduce the syndrome.

Definition 3. A generator g ∈ CX is said to be a critical generator for E ⊆ ε if:

ΓX(g) = Γ1 ⊎ Γ1 ⊎ Γ2 ⊎ Γ2

where

• ΓX(g) ∩ V 2 = Γ1 ⊎ Γ1 and ΓX(g) ∩ C2 = Γ2 ⊎ Γ2;

• Γ1,Γ2 ⊆ E and Γ1,Γ2 ⊆ ε \ E

• for all v1 ∈ Γ1, v2 ∈ Γ2, v1 ∈ Γ1 and v2 ∈ Γ2:

– E ∩ [ΓZ [ΓZ(v1) ∩ ΓZ(v2)] = {v1, v2}

– E ∩ [ΓZ [ΓZ(v1) ∩ ΓZ(v2)] = ϕ



17

– E ∩ [ΓZ [ΓZ(v1) ∩ ΓZ(v2)] = {v1}

– E ∩ [ΓZ [ΓZ(v1) ∩ ΓZ(v2)] = {v2}

• Γ1 ∪ Γ2 ̸= ϕ.

Lemma 1. ( [14, Lemma B.2]) For an error E ⊆ VQ such that 0 < |E| ≤ min(γV |V |, γC |C|), there exists a

critical generator for E.

Lemma 2. ( [14, Lemma B.3]) Let E ⊆ VQ be a error such that 0 < |E| ≤ r min(γV |V |, γC |C|) then there exists

an error F ⊆ F with |σ(E)| − |σ(E ⊕ F )| ≥ βdC |F |.

Theorem 3. Let T (V ∪ C,E) be a (dV , dC)-biregular (γV , δV , γC , δC)-left-right-expanding graph such that

δV , δC < 1/8. For a quantum expander code CT , the small-set-flip decoder runs in linear time in the code length

n = |V |2 + |C|2 and decodes any erasure pattern ε where

|ε| ≤ rmin(γV |V |, γC |C|).

Proof. We run Algorithm 3 on the input E0, and let Êf denote the output. Define

Ef = E0 ⊕ Êf = E0 ⊕

(
f−1⊕
k=0

Fk

)
.

We also define U := E0∪F0∪· · ·∪Ff−1, referred to as the execution support, where f ∈ N represents the number

of iterations. This set includes all qubits that were in error at some point during the algorithm’s execution.

By definition, Fi ⊆ ε ∀ i and E0 ⊆ ε, which implies U ⊆ ε. Consequently, |U | ≤ |ε|, leading to

|U | ≤ rmin(γV |V |, γC |C|).

Thus,

|Ef | = |E0 ⊕ Êf | ≤ |U | ≤ rmin(γV |V |, γC |C|).

To prove Theorem 3, it is sufficient to show that Ef = 0. Assume, for the sake of contradiction, that Ef ̸= 0.

Then, by the hypothesis of Lemma 2, there exists F ∈ F such that |σ(Ef )| − |σ(Ef ⊕ F )| ≥ βdC |F |. However,

since Ef is the output, the while condition in Algorithm 3 is not satisfied for σf = σ(E0 ⊕ Êf ), leading to a

contradiction.

In Algorithm 4, we use Algorithm 3 to correct the errors which were not corrected in the previous iterations of

peeling. From Theorem 3, if the number of such errors is up to dv

dc
min(γV |V |, γC |C|), which is a fraction of the

minimum distance of the quantum expander code, then they will be corrected completely by SSF.

VI. SIMULATION RESULTS

In Fig. 5, we present simulation results for the decoding performance of [[1525, 25]], [[6100, 100]] and [[8784, 144]]

quantum expander codes under the peeling decoder. The plots are generated by performing 104 trials for each erasure

rate.
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Fig. 5: Performance of (5, 6)-biregular quantum expander codes using the peeling decoder.

As Fig. 5 shows, the failure rate decreases with the length of the quantum expander code for the same erasure

rate. This is in contrast to the simulation results in [36] where increasing the length of the (general) HGP codes

does not improve the performance of the peeling decoder, which stays constant at around 10−2 for an erasure rate

of 0.2. Further, for the same erasure rate, the [[1600, 64]] HGP code decoded using the VH decoder in [36] can

tolerate a failure rate of approximately 10−3, but at the cost of increased complexity. However, as Fig. 5 shows, a

longer quantum expander code can be instead employed to achieve a comparable performance under peeling, which

is linear.

In Fig. 6, we plot the maximum and minimum weights of the residual error after peeling. At erasure rate 0.3,

we found that the maximum weight of a residual error was 35. However, the failure rate is 0.08 (see Fig. 5). In

many cases, we found that the residual error was correctable by the modified SSF (with known locations). A more

detailed analysis of the probability of SSF succeeding is an interesting direction for future work.

We also observed that the peeling procedure inside clusters was rarely successful because after the initial peeling,

the connecting checks in the clusters had degree > 1 inside the cluster.

VII. CONCLUSION

The problem of recovering from qubit erasures has recently gained attention as erasures occur in many physical

quantum systems. In this paper, it was shown through simulation results that compare across quantum LDPC codes,

that an attractive option to be considered, is the use of quantum expander codes in conjunction with the linear-

complexity peeling decoder. As in the classical case, stopping sets pose a major challenge in designing efficient
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Fig. 6: Maximum and minimum weights of the residual error after peeling.

erasure decoders for quantum LDPC codes. The linear-time decoding algorithm presented here employed small-

set-flip decoding as well as cluster-based decoding to handle stopping sets. However, it was our finding through

simulation, that these additional techniques improve only in small measure, upon the performance of the peeling

decoder. Our simulation results also include limited statistical data compiled on erasure patterns that the peeling

decoder was unable to recover from.
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	Introduction
	Quantum Error Correction
	Classical Error-Correcting Codes
	Quantum Error-Correcting Codes
	Quantum Erasure Channel
	CSS Codes

	Hypergraph Product Codes
	Quantum Expander Codes
	Pruned Peeling Decoder
	Stopping Sets for Hypergraph Product Codes
	Vertical-Horizontal (VH) Decoder for Hypergraph Product Codes

	A Linear-time erasure decoder for quantum expander codes
	Analysis of Algorithm 4
	Analysis of Algorithm 1
	Analysis of Algorithm 2
	Analysis of Algorithm 3

	Simulation Results
	Conclusion
	References

